organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2,4-Dioxo-1,5-benzodiazepino-15crown-3

L. Cherif Alaoui,^a Y. Kandri Rodi,^a A. Haoudi,^a S. Obbade^{b*} and E. M. Essassi^c

^aLaboratoire de Chimie Organique Appliquée, Chimie Appliquée, Faculté des Sciences et Techniques, Université Sidi Mohamed Ben Abdallah, Fes, Morocco, ^bUnité de Catalyse et Chimie du Solide de Lille, UMR, CNRS, 8181, ENSCL, BP 108, 59652 Villeneuve d'Ascq, France, and ^cLaboratoire de Chimie Organique Hétérocyclique, Faculté des Sciences, Avenue Ibn-Batouta, Rabat, Morocco Correspondence e-mail: said obbade@ensc-lille fr

Received 7 June 2007; accepted 18 June 2007

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.003 Å; R factor = 0.049; wR factor = 0.150; data-to-parameter ratio = 19.6.

The title compound (systematic name: 4,7,10-trioxa-1,13diazatricyclo[11.6.3.0^{14,19}]icosa-14,16,18-triene-20,22-dione), C₁₇H₂₂N₂O₅, is a macrocycle containing two roughly perpendicular parts, viz. the benzo-fused macrocycle and the dicarbonyl spacer. The carbonyl groups point out of the cavity, far away from the O atoms of the macrocycle, and so cannot be involved in coordination to a metal ion.

Related literature

For related literature, see: Allen (2002); Bürger & Seebach (1994); Basak & Shain (1998); Bourgoin et al. (1975); Chang et al. (1986); Costero & Rodriguez (1992); Cram & Ho (1986); Dietrich et al. (1993); Izatt et al. (1987, 1991, 1995); Keïta et al. (2003); Lazrak et al. (2004); Liotta & Harris (1974); Pedersen (1967); Rothermel et al. (1992); Sam & Simmons (1972); Takaki et al. (1972); Veggel et al. (1991).

Experimental

Crystal data

C17H22N2O5 $M_r = 334.37$ Monoclinic, $P2_1/n$ a = 11.786 (3) Å b = 8.092 (2) Å c = 18.062 (5) Å $\beta = 103.692 (17)^{\circ}$

V = 1673.8 (8) Å³ Z = 4Mo $K\alpha$ radiation $\mu = 0.10 \text{ mm}^{-1}$ T = 296 (2) K $0.25 \times 0.19 \times 0.05 \text{ mm}$

Data collection

Bruker SMART CCD area-detector	58268 measured reflections
diffractometer	4249 independent reflections
Absorption correction: multi-scan	2847 reflections with $I > 2\sigma(I)$
(SADABS; Bruker, 1998)	$R_{\rm int} = 0.056$
$T_{\min} = 0.950, \ T_{\max} = 0.994$	
Refinement	

$R[F^2 > 2\sigma(F^2)] = 0.049$	217 parameters
$wR(F^2) = 0.151$	H-atom parameters constrained
S = 1.02	$\Delta \rho_{\rm max} = 0.63 \ {\rm e} \ {\rm \AA}^{-3}$
4249 reflections	$\Delta \rho_{\rm min} = -0.23 \text{ e } \text{\AA}^{-3}$

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

The 'Fonds Européen de Développement Régional (FEDER)', 'CNRS', 'Région Nord Pas-de-Calais' and 'Ministère de l'Education Nationale de l'Enseignement Supérieur et de la Recherche' are acknowledged for their financial supports of different X-ray diffractometers.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2198).

References

- Allen, F. H. (2002). Acta Cryst. B58, 380-388.
- Basak, A. & Shain, J. C. (1998). Tetrahedron Lett. 39, 3029-3030.
- Bourgoin, M., Wong, K. H., Hui, J. Y. & Smid, J. (1975). J. Am. Chem. Soc. 97, 3462-3467.
- Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bürger, H. M. & Seebach, D. (1994). Angew. Chem. Int. Ed. Engl. 33, 442-451.
- Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
- Chang, C. A., Twu, J. & Bartsch, R. A. (1986). Inorg. Chem. 25, 396-398.
- Costero, A. M. & Rodriguez, S. (1992). Tetrahedron, 30, 6265-6272.
- Cram, D. J. & Ho, S. P. (1986). J. Am. Chem. Soc. 108, 2998-3005.
- Dietrich, B., Viout, P. & Lehn, J. M. (1993). Macrocyclic Chemistry: Aspects of Organic and Inorganic Supramolecular Chemistry, sect. 21-3, p. 384. Weinheim: VCH.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Izatt, R. M., Lindh, G. C., Clark, G. A., Nakatsuji, Y., Bradshaw, J. S., Lamband, J. D. & Christensen, J. J. (1987). J. Membr. Sci. 31, 1-13.
- Izatt, R. M., Pawlak, K. & Bradshaw, J. S. (1991). Chem. Rev. 91, 1721-2085.
- Izatt, R. M., Pawlak, K. & Bradshaw, J. S. (1995). Chem. Rev. 95, 2529-2586.
- Keïta, A., Lazrak, F., Essassi, E. M., Cherif Alaoui, I., Kandri Rodi, Y., Belan, J. & Pierrot, M. (2003). Phosphorus Sulfur Silicon, 178, 1541-1548.
- Lazrak, F., Essassi, E. M., Kandri Rodi, Y., Misbahi, K. & Pierrot, M. (2004). Phosphorus Sulfur Silicon, 179, 1799-1808.
- Liotta, C. L. & Harris, H. P. (1974). J. Am. Chem. Soc. 96, 2250-2252.
- Pedersen, C. J. (1967). J. Am. Chem. Soc. 89, 7017-7036.
- Rothermel, G. L., Miao, L., Hill, A. L. & Jackels, S. C. (1992). Inorg. Chem. 31, 4854-4859
- Sam, D. J. & Simmons, H. E. (1972). J. Am. Chem. Soc. 94, 4024-4025.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Takaki, U., Hogen Esch, T. E. & Smid, J. (1972). J. Phys. Chem. 76, 2152-2155
- Veggel, F. C. J. M. V., Bos, M., Harkema, S., Bovenkamp, H. V., Verboom, W., Reedijk, J. & Reinhouldt, D. N. (1991). J. Org. Chem. 56, 225-235.

supplementary materials

Acta Cryst. (2007). E63, o3494 [doi:10.1107/S1600536807029753]

2,4-Dioxo-1,5-benzodiazepino-15-crown-3

L. Cherif Alaoui, Y. Kandri Rodi, A. Haoudi, S. Obbade and E. M. Essassi

Comment

Since the pioneering work of Pederson (Pedersen, 1967), extensive research has been devoted to the preparation and study of the macrocyclic polyethers properties. Several types of ligands have been synthesized to enhance the stability of the cation-ligand complex and to achieve better selectivity (Izatt *et al.*, 1991; Izatt *et al.*, 1995; Veggel *et al.*, 1991; Rothermel *et al.* 1992; Basak *et al.*, 1998). These last years, research was focused on the synthesis of macrocycles being able to have potential applications in different fields such as the ionic and molecular recognition (Dietrich *et al.*, 1991), chemical analysis (Cram & Ho, 1986), the extraction and the metal elements transport through pecific membranes (Izatt *et al.*, 1987; Costero & Rodriguez, 1992; Chang *et al.*, 1986, Bürger & Seebach, 1994). In addition, from a reactional point of view, this type of compound is used as well in the supramolecular catalysis (Sam & Simmons, 1972; Liotta & Harris, 1974) or in the separation of the pairs of ions while behaving as base (Takaki *et al.*, 1972; Bourgoin *et al.*, 1975). In this context, we prepared the 2,4-dioxo-1,5 benzodizepino-15-crown-3, obtained by condensation of the dichlorotetraethlene-glycol with the 1,5-benzodiazepine-2,4-dione by phase transfer catalysis conditions (Keïta *et al.*, 2003; Lazrak *et al.*, 2004)using dimethylformamide as solvent. (I).

The molecular structure of (I) is built up from a benzodiazepine fragment and a crown ether as a spacer (Fig. 1). The bond lengths and angles are within the expected range for similar structures deposited in the Cambridge Structural Database, Version 5.27, 2006(Allen, 2002). The crystal structure is stabilized by Van der Waals forces.

Experimental

With a solution of 11.10–3 mole of the 1,5-benzodiazepine-2,4-dione in 60 ml of dimethylformamide, one adds 33. 10–3 mole of potassium carbonate, 11. 10–3 mole of the di-chloro tetraethylene glycol and 6 10–3 mole of tetra-n-butylammonium bromide. Under agitation, the mixture is heated at a temperature between 80 and 90°C during 24 h. After filtration of salts, the filtrate is concentrated under reduced pressure (1.10–2 m mH g). The compound is purified by silica gel column chromatography (eluant/chloroform/methanol: 95/5).

Refinement

All H atoms were fixed geometrically and treated as riding with C—H = 0.93 Å (aromatic) or 0.97 Å (methylene) with = $U_{iso}(H) = 1.2U_{eq}(C)$.

Figures

Fig. 1. : Molecular view of the title compound with the atom labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii

4,7,10-Trioxa-1,13-diazatricyclo[11.6.3.0^{14,19}]icosa-14,16,18-triene- 20,22-dione

Crystal data

$C_{17}H_{22}N_2O_5$	$F_{000} = 712$
$M_r = 334.37$	$D_{\rm x} = 1.327 \ {\rm Mg \ m}^{-3}$
Monoclinic, $P2_1/n$	Mo K α radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2yn	Cell parameters from 8091 reflections
a = 11.786 (3) Å	$\theta = 2.3 - 22.2^{\circ}$
b = 8.092 (2) Å	$\mu = 0.10 \text{ mm}^{-1}$
c = 18.062 (5) Å	T = 296 (2) K
$\beta = 103.692 \ (17)^{\circ}$	Block, colourless
$V = 1673.8 (8) \text{ Å}^3$	$0.25\times0.19\times0.05~mm$
Z = 4	

Data collection

Bruker SMART CCD area-detector diffractometer	4249 independent reflections
Radiation source: fine-focus sealed tube	2847 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.056$
T = 296(2) K	$\theta_{\text{max}} = 28.6^{\circ}$
ϕ and ω scans	$\theta_{\min} = 2.3^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker, 1998)	$h = -15 \rightarrow 15$
$T_{\min} = 0.950, \ T_{\max} = 0.994$	$k = -10 \rightarrow 10$
58268 measured reflections	$l = -24 \rightarrow 24$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.049$	H-atom parameters constrained
$wR(F^2) = 0.151$	$w = 1/[\sigma^2(F_o^2) + (0.0687P)^2 + 0.6508P]$ where $P = (F_o^2 + 2F_c^2)/3$

<i>S</i> = 1.02	$(\Delta/\sigma)_{max} < 0.001$
4249 reflections	$\Delta \rho_{max} = 0.63 \text{ e} \text{ Å}^{-3}$
217 parameters	$\Delta \rho_{min} = -0.23 \text{ e } \text{\AA}^{-3}$

Primary atom site location: structure-invariant direct Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Z	$U_{\rm iso}*/U_{\rm eq}$
N1	0.20967 (11)	0.18321 (16)	0.97933 (8)	0.0311 (3)
N2	0.30717 (12)	0.48339 (16)	0.93351 (8)	0.0346 (3)
01	0.33317 (11)	-0.01059 (14)	0.95379 (9)	0.0491 (4)
O2	0.46850 (13)	0.39526 (18)	0.89713 (9)	0.0593 (4)
O3	-0.03654 (12)	0.00746 (18)	0.84001 (8)	0.0523 (4)
O4	0.11484 (14)	0.5203 (2)	0.78801 (8)	0.0608 (4)
O5	-0.02232 (14)	0.2477 (2)	0.71616 (9)	0.0708 (5)
C1	0.10071 (17)	0.4975 (3)	1.09477 (11)	0.0501 (5)
H1	0.0511	0.5030	1.1278	0.060*
C2	0.15493 (17)	0.6394 (3)	1.07702 (11)	0.0494 (5)
H2	0.1443	0.7393	1.0999	0.059*
C3	0.12066 (15)	0.3484 (2)	1.06322 (9)	0.0396 (4)
Н3	0.0875	0.2525	1.0772	0.047*
C4	0.22434 (16)	0.6323 (2)	1.02571 (10)	0.0420 (4)
H4	0.2614	0.7276	1.0148	0.050*
C5	0.19048 (13)	0.3397 (2)	1.01025 (9)	0.0304 (3)
C6	0.24003 (14)	0.4840 (2)	0.98966 (9)	0.0322 (3)
C7	0.40197 (14)	0.3828 (2)	0.93951 (10)	0.0375 (4)
C8	0.31806 (14)	0.12811 (19)	0.97673 (10)	0.0333 (4)
C9	0.41718 (13)	0.2502 (2)	0.99990 (11)	0.0374 (4)
H9A	0.4161	0.2991	1.0488	0.045*
H9B	0.4914	0.1946	1.0046	0.045*
C10	0.10919 (14)	0.0749 (2)	0.94951 (10)	0.0355 (4)
H10A	0.0443	0.1072	0.9709	0.043*
H10B	0.1296	-0.0384	0.9645	0.043*
C11	0.07348 (16)	0.0865 (3)	0.86399 (11)	0.0474 (5)
H11A	0.0676	0.2013	0.8481	0.057*

supplementary materials

0.1308	0.0324	0.8416	0.057*
0.28953 (19)	0.6158 (2)	0.87579 (11)	0.0466 (5)
0.3647	0.6648	0.8760	0.056*
0.2413	0.7012	0.8904	0.056*
0.2335 (2)	0.5609 (3)	0.79602 (13)	0.0600 (6)
0.2397	0.6486	0.7606	0.072*
0.2747	0.4652	0.7834	0.072*
-0.0747 (2)	-0.0112 (3)	0.75962 (13)	0.0693 (7)
-0.1371	-0.0923	0.7487	0.083*
-0.0105	-0.0540	0.7402	0.083*
-0.1168 (2)	0.1426 (4)	0.71898 (15)	0.0842 (9)
-0.1599	0.1168	0.6676	0.101*
-0.1693	0.1986	0.7447	0.101*
0.0551 (3)	0.5107 (3)	0.70931 (13)	0.0714 (7)
0.1052	0.4583	0.6806	0.086*
0.0369	0.6211	0.6892	0.086*
-0.0534 (2)	0.4149 (4)	0.70047 (13)	0.0763 (8)
-0.0980	0.4550	0.7355	0.092*
-0.1009	0.4260	0.6489	0.092*
	0.1308 0.28953 (19) 0.3647 0.2413 0.2335 (2) 0.2397 0.2747 -0.0747 (2) -0.1371 -0.0105 -0.1168 (2) -0.1599 -0.1693 0.0551 (3) 0.1052 0.0369 -0.0534 (2) -0.0980 -0.1009	0.1308 0.0324 0.28953 (19) 0.6158 (2) 0.3647 0.6648 0.2413 0.7012 0.2335 (2) 0.5609 (3) 0.2397 0.6486 0.2747 0.4652 -0.0747 (2) -0.0112 (3) -0.1371 -0.0923 -0.0105 -0.0540 -0.1168 (2) 0.1426 (4) -0.1599 0.1168 0.0551 (3) 0.5107 (3) 0.1052 0.4583 0.0369 0.6211 -0.0930 0.4250	0.13080.03240.84160.28953 (19)0.6158 (2)0.87579 (11)0.36470.66480.87600.24130.70120.89040.2335 (2)0.5609 (3)0.79602 (13)0.23970.64860.76060.27470.46520.7834-0.0747 (2)-0.0112 (3)0.75962 (13)-0.1371-0.09230.7487-0.0105-0.05400.7402-0.1168 (2)0.1426 (4)0.71898 (15)-0.15990.11680.6676-0.16930.5107 (3)0.70931 (13)0.10520.45830.68060.03690.62110.6892-0.0534 (2)0.4149 (4)0.70047 (13)-0.09800.42600.6489

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0283 (6)	0.0268 (7)	0.0385 (7)	-0.0017 (5)	0.0088 (5)	0.0010 (5)
N2	0.0387 (7)	0.0269 (7)	0.0406 (8)	-0.0030 (6)	0.0144 (6)	0.0008 (6)
01	0.0446 (7)	0.0277 (6)	0.0760 (10)	0.0037 (5)	0.0165 (7)	-0.0054 (6)
O2	0.0534 (8)	0.0561 (9)	0.0809 (11)	-0.0055 (7)	0.0410 (8)	-0.0002 (8)
O3	0.0448 (7)	0.0668 (9)	0.0454 (7)	-0.0242 (7)	0.0106 (6)	-0.0088 (6)
O4	0.0686 (10)	0.0751 (10)	0.0376 (7)	-0.0089 (8)	0.0106 (7)	0.0001 (7)
O5	0.0629 (10)	0.0820 (12)	0.0626 (10)	-0.0037 (9)	0.0053 (8)	0.0052 (9)
C1	0.0423 (10)	0.0748 (14)	0.0338 (9)	0.0152 (10)	0.0104 (8)	-0.0082 (9)
C2	0.0498 (11)	0.0513 (11)	0.0448 (10)	0.0172 (9)	0.0065 (8)	-0.0129 (9)
C3	0.0343 (8)	0.0531 (11)	0.0317 (8)	0.0013 (8)	0.0086 (7)	0.0026 (7)
C4	0.0429 (9)	0.0334 (9)	0.0470 (10)	0.0066 (7)	0.0050 (8)	-0.0062 (7)
C5	0.0282 (7)	0.0325 (8)	0.0296 (7)	0.0037 (6)	0.0048 (6)	0.0006 (6)
C6	0.0308 (8)	0.0313 (8)	0.0338 (8)	0.0042 (6)	0.0061 (6)	-0.0003 (6)
C7	0.0333 (8)	0.0314 (8)	0.0507 (10)	-0.0078 (7)	0.0161 (7)	-0.0073 (7)
C8	0.0330 (8)	0.0269 (8)	0.0404 (9)	0.0018 (6)	0.0091 (7)	0.0043 (7)
C9	0.0265 (7)	0.0337 (9)	0.0513 (10)	0.0031 (7)	0.0078 (7)	-0.0041 (7)
C10	0.0323 (8)	0.0303 (8)	0.0448 (9)	-0.0066 (7)	0.0112 (7)	0.0036 (7)
C11	0.0379 (9)	0.0599 (12)	0.0456 (10)	-0.0163 (9)	0.0121 (8)	-0.0031 (9)
C12	0.0590 (11)	0.0300 (9)	0.0537 (11)	-0.0079 (8)	0.0187 (9)	0.0070 (8)
C13	0.0777 (15)	0.0543 (12)	0.0555 (12)	0.0009 (11)	0.0306 (11)	0.0118 (10)
C14	0.0695 (15)	0.0887 (18)	0.0486 (12)	-0.0384 (14)	0.0122 (11)	-0.0221 (12)
C15	0.0585 (14)	0.133 (3)	0.0515 (14)	-0.0227 (16)	-0.0061 (11)	0.0033 (15)
C16	0.109 (2)	0.0618 (15)	0.0395 (12)	0.0099 (14)	0.0106 (12)	0.0042 (10)
C17	0.0862 (18)	0.0896 (19)	0.0407 (12)	0.0155 (16)	-0.0099 (11)	-0.0094 (12)

Geometric parameters (Å, °)

N1—C8	1.364 (2)	С7—С9	1.510 (3)
N1—C5	1.423 (2)	С8—С9	1.511 (2)
N1—C10	1.469 (2)	С9—Н9А	0.9700
N2—C7	1.366 (2)	С9—Н9В	0.9700
N2—C6	1.426 (2)	C10—C11	1.505 (3)
N2—C12	1.475 (2)	C10—H10A	0.9700
O1—C8	1.2240 (19)	C10—H10B	0.9700
O2—C7	1.223 (2)	C11—H11A	0.9700
O3—C11	1.419 (2)	C11—H11B	0.9700
O3—C14	1.423 (3)	C12—C13	1.503 (3)
O4—C13	1.410 (3)	C12—H12A	0.9700
O4—C16	1.431 (3)	C12—H12B	0.9700
O5—C15	1.411 (3)	C13—H13A	0.9700
O5—C17	1.413 (3)	C13—H13B	0.9700
C1—C3	1.378 (3)	C14—C15	1.470 (4)
C1—C2	1.388 (3)	C14—H14A	0.9700
C1—H1	0.9300	C14—H14B	0.9700
C2—C4	1.375 (3)	C15—H15A	0.9700
С2—Н2	0.9300	C15—H15B	0.9700
C3—C5	1.404 (2)	C16—C17	1.471 (4)
С3—Н3	0.9300	C16—H16A	0.9700
C4—C6	1.398 (2)	C16—H16B	0.9700
C4—H4	0.9300	С17—Н17А	0.9700
C5—C6	1.395 (2)	C17—H17B	0.9700
C8—N1—C5	122.77 (13)	H10A—C10—H10B	108.1
C8—N1—C5 C8—N1—C10	122.77 (13) 118.20 (13)	H10A—C10—H10B O3—C11—C10	108.1 107.38 (14)
C8—N1—C5 C8—N1—C10 C5—N1—C10	122.77 (13) 118.20 (13) 119.03 (13)	H10A—C10—H10B O3—C11—C10 O3—C11—H11A	108.1 107.38 (14) 110.2
C8—N1—C5 C8—N1—C10 C5—N1—C10 C7—N2—C6	122.77 (13) 118.20 (13) 119.03 (13) 121.80 (14)	H10A—C10—H10B O3—C11—C10 O3—C11—H11A C10—C11—H11A	108.1 107.38 (14) 110.2 110.2
C8—N1—C5 C8—N1—C10 C5—N1—C10 C7—N2—C6 C7—N2—C12	122.77 (13) 118.20 (13) 119.03 (13) 121.80 (14) 117.70 (15)	H10A—C10—H10B O3—C11—C10 O3—C11—H11A C10—C11—H11A O3—C11—H11B	108.1 107.38 (14) 110.2 110.2 110.2
C8—N1—C5 C8—N1—C10 C5—N1—C10 C7—N2—C6 C7—N2—C12 C6—N2—C12	122.77 (13) 118.20 (13) 119.03 (13) 121.80 (14) 117.70 (15) 119.39 (14)	H10A—C10—H10B O3—C11—C10 O3—C11—H11A C10—C11—H11A O3—C11—H11B C10—C11—H11B	108.1 107.38 (14) 110.2 110.2 110.2 110.2
C8—N1—C5 C8—N1—C10 C5—N1—C10 C7—N2—C6 C7—N2—C12 C6—N2—C12 C11—O3—C14	122.77 (13) 118.20 (13) 119.03 (13) 121.80 (14) 117.70 (15) 119.39 (14) 113.89 (15)	H10A—C10—H10B O3—C11—C10 O3—C11—H11A C10—C11—H11A O3—C11—H11B C10—C11—H11B H11A—C11—H11B	108.1 107.38 (14) 110.2 110.2 110.2 110.2 110.2 108.5
C8—N1—C5 C8—N1—C10 C5—N1—C10 C7—N2—C6 C7—N2—C12 C6—N2—C12 C11—O3—C14 C13—O4—C16	122.77 (13) 118.20 (13) 119.03 (13) 121.80 (14) 117.70 (15) 119.39 (14) 113.89 (15) 110.95 (18)	H10A—C10—H10B O3—C11—C10 O3—C11—H11A C10—C11—H11A O3—C11—H11B C10—C11—H11B H11A—C11—H11B N2—C12—C13	108.1 107.38 (14) 110.2 110.2 110.2 110.2 108.5 114.77 (16)
C8—N1—C5 C8—N1—C10 C5—N1—C10 C7—N2—C6 C7—N2—C12 C6—N2—C12 C11—O3—C14 C13—O4—C16 C15—O5—C17	122.77 (13) 118.20 (13) 119.03 (13) 121.80 (14) 117.70 (15) 119.39 (14) 113.89 (15) 110.95 (18) 114.5 (2)	H10A—C10—H10B O3—C11—C10 O3—C11—H11A C10—C11—H11A O3—C11—H11B C10—C11—H11B H11A—C11—H11B N2—C12—C13 N2—C12—H12A	108.1 107.38 (14) 110.2 110.2 110.2 110.2 108.5 114.77 (16) 108.6
C8—N1—C5 C8—N1—C10 C5—N1—C10 C7—N2—C6 C7—N2—C12 C6—N2—C12 C11—O3—C14 C13—O4—C16 C15—O5—C17 C3—C1—C2	122.77 (13) 118.20 (13) 119.03 (13) 121.80 (14) 117.70 (15) 119.39 (14) 113.89 (15) 110.95 (18) 114.5 (2) 119.72 (17)	H10A—C10—H10B O3—C11—C10 O3—C11—H11A C10—C11—H11A O3—C11—H11B C10—C11—H11B H11A—C11—H11B N2—C12—C13 N2—C12—H12A C13—C12—H12A	108.1 107.38 (14) 110.2 110.2 110.2 110.2 108.5 114.77 (16) 108.6 108.6
C8—N1—C5 C8—N1—C10 C5—N1—C10 C7—N2—C6 C7—N2—C12 C6—N2—C12 C11—O3—C14 C13—O4—C16 C15—O5—C17 C3—C1—C2 C3—C1—H1	122.77 (13) 118.20 (13) 119.03 (13) 121.80 (14) 117.70 (15) 119.39 (14) 113.89 (15) 110.95 (18) 114.5 (2) 119.72 (17) 120.1	H10A—C10—H10B O3—C11—C10 O3—C11—H11A C10—C11—H11A O3—C11—H11B C10—C11—H11B H11A—C11—H11B N2—C12—C13 N2—C12—H12A C13—C12—H12A N2—C12—H12B	108.1 107.38 (14) 110.2 110.2 110.2 110.2 108.5 114.77 (16) 108.6 108.6 108.6
C8—N1—C5 C8—N1—C10 C5—N1—C10 C7—N2—C6 C7—N2—C12 C6—N2—C12 C11—O3—C14 C13—O4—C16 C15—O5—C17 C3—C1—C2 C3—C1—H1 C2—C1—H1	122.77 (13) 118.20 (13) 119.03 (13) 121.80 (14) 117.70 (15) 119.39 (14) 113.89 (15) 110.95 (18) 114.5 (2) 119.72 (17) 120.1 120.1	H10A—C10—H10B O3—C11—C10 O3—C11—H11A C10—C11—H11A O3—C11—H11B C10—C11—H11B H11A—C11—H11B N2—C12—C13 N2—C12—H12A C13—C12—H12B C13—C12—H12B	108.1 107.38 (14) 110.2 110.2 110.2 110.2 108.5 114.77 (16) 108.6 108.6 108.6 108.6
C8-N1-C5 $C8-N1-C10$ $C5-N1-C10$ $C7-N2-C6$ $C7-N2-C12$ $C6-N2-C12$ $C11-O3-C14$ $C13-O4-C16$ $C15-O5-C17$ $C3-C1-C2$ $C3-C1-H1$ $C2-C1-H1$ $C4-C2-C1$	122.77 (13) 118.20 (13) 119.03 (13) 121.80 (14) 117.70 (15) 119.39 (14) 113.89 (15) 110.95 (18) 114.5 (2) 119.72 (17) 120.1 120.1 120.10 (17)	H10A—C10—H10B O3—C11—C10 O3—C11—H11A C10—C11—H11A O3—C11—H11B C10—C11—H11B H11A—C11—H11B N2—C12—C13 N2—C12—H12A C13—C12—H12A N2—C12—H12B C13—C12—H12B H12A—C12—H12B	108.1 107.38 (14) 110.2 110.2 110.2 110.2 108.5 114.77 (16) 108.6 108.6 108.6 108.6 108.6 107.6
C8-N1-C5 $C8-N1-C10$ $C5-N1-C10$ $C7-N2-C6$ $C7-N2-C12$ $C6-N2-C12$ $C11-O3-C14$ $C13-O4-C16$ $C15-O5-C17$ $C3-C1-C2$ $C3-C1-H1$ $C2-C1-H1$ $C4-C2-C1$ $C4-C2-H2$	122.77 (13) 118.20 (13) 119.03 (13) 121.80 (14) 117.70 (15) 119.39 (14) 113.89 (15) 110.95 (18) 114.5 (2) 119.72 (17) 120.1 120.1 120.10 (17) 120.0	H10A—C10—H10B O3—C11—C10 O3—C11—H11A C10—C11—H11A O3—C11—H11B C10—C11—H11B H11A—C11—H11B N2—C12—C13 N2—C12—H12A C13—C12—H12A N2—C12—H12B C13—C12—H12B H12A—C12—H12B O4—C13—C12	108.1 107.38 (14) 110.2 110.2 110.2 110.2 108.5 114.77 (16) 108.6 108.6 108.6 108.6 108.6 108.6 107.6 111.57 (17)
C8-N1-C5 $C8-N1-C10$ $C5-N1-C10$ $C7-N2-C6$ $C7-N2-C12$ $C6-N2-C12$ $C11-O3-C14$ $C13-O4-C16$ $C15-O5-C17$ $C3-C1-C2$ $C3-C1-H1$ $C2-C1-H1$ $C4-C2-C1$ $C4-C2-H2$ $C1-C2-H2$	122.77 (13) 118.20 (13) 119.03 (13) 121.80 (14) 117.70 (15) 119.39 (14) 113.89 (15) 110.95 (18) 114.5 (2) 119.72 (17) 120.1 120.1 120.10 (17) 120.0 120.0	H10A-C10-H10B O3-C11-C10 O3-C11-H11A C10-C11-H11A O3-C11-H11B C10-C11-H11B H11A-C11-H11B N2-C12-C13 N2-C12-H12A C13-C12-H12A N2-C12-H12B C13-C12-H12B H12A-C12-H12B H12A-C12-H12B O4-C13-C12 O4-C13-H13A	108.1 107.38 (14) 110.2 110.2 110.2 110.2 108.5 114.77 (16) 108.6 108.6 108.6 108.6 108.6 107.6 111.57 (17) 109.3
C8-N1-C5 $C8-N1-C10$ $C5-N1-C10$ $C7-N2-C6$ $C7-N2-C12$ $C6-N2-C12$ $C11-O3-C14$ $C13-O4-C16$ $C15-O5-C17$ $C3-C1-C2$ $C3-C1-H1$ $C4-C2-C1$ $C4-C2-H2$ $C1-C2-H2$ $C1-C2-H2$ $C1-C3-C5$	122.77 (13) 118.20 (13) 119.03 (13) 121.80 (14) 117.70 (15) 119.39 (14) 113.89 (15) 110.95 (18) 114.5 (2) 119.72 (17) 120.1 120.1 120.0 120.0 120.0 120.71 (17)	H10A-C10-H10B O3-C11-C10 O3-C11-H11A C10-C11-H11A O3-C11-H11B C10-C11-H11B H11A-C11-H11B N2-C12-C13 N2-C12-H12A C13-C12-H12A C13-C12-H12B H12A-C12-H12B H12A-C12-H12B O4-C13-C12 O4-C13-H13A C12-C13-H13A	108.1 107.38 (14) 110.2 110.2 110.2 110.2 108.5 114.77 (16) 108.6 108.6 108.6 108.6 108.6 107.6 111.57 (17) 109.3 109.3
C8-N1-C5 $C8-N1-C10$ $C5-N1-C10$ $C7-N2-C6$ $C7-N2-C12$ $C6-N2-C12$ $C11-O3-C14$ $C13-O4-C16$ $C15-O5-C17$ $C3-C1-C2$ $C3-C1-H1$ $C2-C1-H1$ $C4-C2-H2$ $C1-C2-H2$ $C1-C2-H2$ $C1-C3-C5$ $C1-C3-H3$	122.77 (13) 118.20 (13) 119.03 (13) 121.80 (14) 117.70 (15) 119.39 (14) 113.89 (15) 110.95 (18) 114.5 (2) 119.72 (17) 120.1 120.1 120.10 (17) 120.0 120.0 120.71 (17) 119.6	H10A-C10-H10B O3-C11-C10 O3-C11-H11A C10-C11-H11A O3-C11-H11B C10-C11-H11B H11A-C11-H11B N2-C12-C13 N2-C12-H12A C13-C12-H12A N2-C12-H12B C13-C12-H12B H12A-C12-H12B H12A-C12-H12B O4-C13-C12 O4-C13-H13A C12-C13-H13A O4-C13-H13B	108.1 107.38 (14) 110.2 110.2 110.2 110.2 108.5 114.77 (16) 108.6 108.6 108.6 108.6 108.6 107.6 111.57 (17) 109.3 109.3
C8-N1-C5 $C8-N1-C10$ $C5-N1-C10$ $C7-N2-C6$ $C7-N2-C12$ $C6-N2-C12$ $C11-O3-C14$ $C13-O4-C16$ $C15-O5-C17$ $C3-C1-C2$ $C3-C1-H1$ $C2-C1-H1$ $C4-C2-H2$ $C1-C2-H2$ $C1-C2-H2$ $C1-C3-H3$ $C5-C3-H3$	122.77 (13) 118.20 (13) 119.03 (13) 121.80 (14) 117.70 (15) 119.39 (14) 113.89 (15) 110.95 (18) 114.5 (2) 119.72 (17) 120.1 120.1 120.1 120.0 120.0 120.0 120.71 (17) 119.6 119.6	$\begin{array}{c} H10A-C10-H10B\\ O3-C11-C10\\ O3-C11-H11A\\ C10-C11-H11A\\ O3-C11-H11B\\ C10-C11-H11B\\ H11A-C11-H11B\\ H11A-C11-H11B\\ N2-C12-C13\\ N2-C12-H12A\\ C13-C12-H12A\\ C13-C12-H12B\\ C13-C12-H12B\\ H12A-C12-H12B\\ H12A-C12-H12B\\ O4-C13-C12\\ O4-C13-H13A\\ C12-C13-H13A\\ C12-C13-H13B\\ C12-C13-H13B\\ C12-C13-H13B\\ C12-C13-H13B\\ \end{array}$	108.1 107.38 (14) 110.2 110.2 110.2 110.2 108.5 114.77 (16) 108.6 108.6 108.6 108.6 107.6 111.57 (17) 109.3 109.3 109.3
C8-N1-C5 $C8-N1-C10$ $C5-N1-C10$ $C7-N2-C6$ $C7-N2-C12$ $C6-N2-C12$ $C11-O3-C14$ $C13-O4-C16$ $C15-O5-C17$ $C3-C1-C2$ $C3-C1-H1$ $C4-C2-H1$ $C4-C2-H2$ $C1-C2-H2$ $C1-C3-H3$ $C5-C3-H3$ $C2-C4-C6$	122.77 (13) 118.20 (13) 119.03 (13) 121.80 (14) 117.70 (15) 119.39 (14) 113.89 (15) 110.95 (18) 114.5 (2) 119.72 (17) 120.1 120.1 120.10 (17) 120.0 120.71 (17) 119.6 119.6 120.98 (18)	H10A—C10—H10B O3—C11—C10 O3—C11—H11A C10—C11—H11A O3—C11—H11B C10—C11—H11B H11A—C11—H11B N2—C12—C13 N2—C12—H12A C13—C12—H12A C13—C12—H12B H12A—C12—H12B H12A—C12—H12B O4—C13—C12 O4—C13—H13A C12—C13—H13A O4—C13—H13B H13A—C13—H13B	108.1 107.38 (14) 110.2 110.2 110.2 110.2 108.5 114.77 (16) 108.6 108.6 108.6 108.6 108.6 107.6 111.57 (17) 109.3 109.3 109.3 109.3 109.3
C8-N1-C5 $C8-N1-C10$ $C5-N1-C10$ $C7-N2-C6$ $C7-N2-C12$ $C6-N2-C12$ $C11-O3-C14$ $C13-O4-C16$ $C15-O5-C17$ $C3-C1-C2$ $C3-C1-H1$ $C4-C2-H1$ $C4-C2-H2$ $C1-C2-H2$ $C1-C2-H2$ $C1-C2-H2$ $C1-C3-H3$ $C5-C3-H3$ $C2-C4-C6$ $C2-C4-H4$	122.77 (13) 118.20 (13) 119.03 (13) 121.80 (14) 117.70 (15) 119.39 (14) 113.89 (15) 110.95 (18) 114.5 (2) 119.72 (17) 120.1 120.1 120.1 120.0 120.0 120.0 120.0 120.0 120.71 (17) 119.6 119.6 119.5	$\begin{array}{c} H10A-C10-H10B\\ O3-C11-C10\\ O3-C11-H11A\\ C10-C11-H11A\\ O3-C11-H11B\\ H11A-C11-H11B\\ H11A-C11-H11B\\ H11A-C11-H11B\\ N2-C12-C13\\ N2-C12-H12A\\ C13-C12-H12A\\ C13-C12-H12B\\ H12A-C12-H12B\\ H12A-C12-H12B\\ O4-C13-C12\\ O4-C13-H13A\\ C12-C13-H13A\\ C12-C13-H13B\\ C12-C13-H13B\\ H13A-C13-H13B\\ O3-C14-C15\\ \end{array}$	108.1 107.38 (14) 110.2 110.2 110.2 110.2 108.5 114.77 (16) 108.6 108.6 108.6 108.6 108.6 107.6 111.57 (17) 109.3 109.3 109.3 109.3 108.0 114.1 (2)
C8-N1-C5 $C8-N1-C10$ $C5-N1-C10$ $C7-N2-C6$ $C7-N2-C12$ $C6-N2-C12$ $C11-O3-C14$ $C13-O4-C16$ $C15-O5-C17$ $C3-C1-C2$ $C3-C1-H1$ $C2-C1-H1$ $C4-C2-H2$ $C1-C2-H2$ $C1-C2-H2$ $C1-C2-H2$ $C1-C3-H3$ $C5-C3-H3$ $C2-C4-C6$ $C2-C4-H4$	122.77 (13) 118.20 (13) 119.03 (13) 121.80 (14) 117.70 (15) 119.39 (14) 113.89 (15) 110.95 (18) 114.5 (2) 119.72 (17) 120.1 120.1 120.1 120.1 120.0 120.0 120.0 120.71 (17) 119.6 119.5 119.5	$\begin{array}{c} H10A-C10-H10B\\ O3-C11-C10\\ O3-C11-H11A\\ C10-C11-H11A\\ O3-C11-H11B\\ C10-C11-H11B\\ H11A-C11-H11B\\ N2-C12-C13\\ N2-C12-H12A\\ C13-C12-H12A\\ C13-C12-H12B\\ C13-C12-H12B\\ H12A-C12-H12B\\ H12A-C12-H12B\\ O4-C13-C12\\ O4-C13-H13A\\ C12-C13-H13A\\ C12-C13-H13B\\ C12-C13-H13B\\ H13A-C13-H13B\\ H13A-C13-H13B\\ O3-C14-C15\\ O3-C14-H14A\\ \end{array}$	108.1 107.38 (14) 110.2 110.2 110.2 108.5 114.77 (16) 108.6 108.6 108.6 108.6 108.6 107.6 111.57 (17) 109.3 109.3 109.3 109.3 109.3 108.0 114.1 (2) 108.7

supplementary materials

C6—C5—N1	121.65 (13)	O3—C14—H14B	108.7
C3—C5—N1	119.03 (15)	C15—C14—H14B	108.7
C5—C6—C4	118.99 (15)	H14A—C14—H14B	107.6
C5—C6—N2	121.60 (14)	O5-C15-C14	110.6 (2)
C4—C6—N2	119.41 (15)	O5—C15—H15A	109.5
O2—C7—N2	122.34 (17)	C14—C15—H15A	109.5
O2—C7—C9	121.79 (16)	O5—C15—H15B	109.5
N2—C7—C9	115.83 (14)	C14—C15—H15B	109.5
O1—C8—N1	121.59 (15)	H15A—C15—H15B	108.1
O1—C8—C9	121.89 (15)	O4—C16—C17	110.3 (2)
N1—C8—C9	116.45 (14)	O4-C16-H16A	109.6
С7—С9—С8	108.22 (14)	C17—C16—H16A	109.6
С7—С9—Н9А	110.1	O4-C16-H16B	109.6
С8—С9—Н9А	110.1	C17—C16—H16B	109.6
С7—С9—Н9В	110.1	H16A—C16—H16B	108.1
С8—С9—Н9В	110.1	O5—C17—C16	107.8 (2)
Н9А—С9—Н9В	108.4	O5—C17—H17A	110.2
N1-C10-C11	110.15 (13)	C16—C17—H17A	110.2
N1-C10-H10A	109.6	O5—C17—H17B	110.2
C11-C10-H10A	109.6	C16—C17—H17B	110.2
N1-C10-H10B	109.6	H17A—C17—H17B	108.5
C11-C10-H10B	109.6		

Fig. 1